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1 Introduction 
Structures are subject to random vibrations in the form of base excitation, that is, application of 
a single random input at the base of a structure. Random base acceleration testing is prevalent 
in several industries. Today, there are various simulation tools that can predict structural 
responses to the base excitations, however their performance and accuracy have historically 
been problematic. Key issues include: 
 

• The probabilistic nature of random theory which requires a costly integration step. 

• Important derived quantities such as Von Mises stress do not respect random 
distribution assumptions. 

• Potentially inadequate manual definitions of input frequencies.  

• Workflow issues associated to requesting different result types, and having to post-
process computed results to obtain meaningful engineering metrics. 

 
In this paper, we’ll take a close look at these issues, and we will see how the Random Processor  
of MAYA HTT’s Structural Analysis Toolkit (SAToolkit) addresses each one. We’ll benchmark the 
Random Processor against Simcenter Nastran SOL 111 random subcase , demonstrating that it 
gives the same basic results, provides more accurate results for derived quantities, supports 
important quantities such as composite failure metrics, while requiring far less computation 
time. 
 
We’ll show that the SAToolkit Random Processor is the best-in-class tool for the simulation of 
base-driven random vibration that Nastran users can immediately migrate to. 
 

2 Random Events 
A random event is one in which the properties of the input signal are not known at any one 
time. However, the signal’s statistics can be evaluated and are used to predict a structure’s 
dynamic response. 

2.1 Industrial relevance 

Random events are structural design drivers in the automotive, space and electronics industries.  
 

2.1.1 Space  

Rocket motors produce high levels of acoustic noise, which can exceed 140 db as far away from 
the pad as inside the launcher fairing. The pressure waves induce high vibro-acoustic responses 
in spacecraft structures with large surfaces, such as instrument panels. Panel-mounted units or 
components are excited via their interfaces to the panels.  
 
The dynamic response of such a component is evaluated using random base excitation analysis: 
A random signal, typically an acceleration power spectral density (PSD), is applied at its base, 
which is assumed to be rigid. 
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2.1.2 Automotive  

Automotive components are subjected to vibration that is typically induced by the vehicle’s 
response to road profiles. The trend for automakers and suppliers to perform random vibration 
analysis has increased in recent years, resulting in improved component reliability. Some 
examples include: 

• Instrument panels 

• Seats  

• Air-bag sensors  

• Fuel injection components 

• Headlights, taillights and chmsls. 
 

2.1.3 Electronics  

Random vibrations can adversely affect printed circuit board (PCB) performance, depending on 
the board’s modal characteristics, structural damping, housing dynamics and vibration input. 
Performance of PCBs and electronic components is evaluated against random events in a wide 
range of applications such as consumer products. 

3 Linear Stress Analysis 
For metallic and other isotropic materials, quantities derived from stress tensors such as 
principal and Von Mises stresses are compared to published strength values to produce failure 
metrics. Computing these derived responses for a random event requires advanced algorithms 
and can be computationally expensive.  
 
First ply failure (FPF) is a common linear analysis method in which the laminate is considered to 
have failed when the first ply fails. Using classical laminate theory, the stress components in 
each ply are determined and compared to orthotropic stress limits using an interaction 
equation. 
 
Commonly derived quantities for both isotropic and orthotropic laminate materials are 
reviewed here.   

3.1 Von Mises stress and failure metrics 

Von Mises failure theory is widely used for metallic materials and is typically associated with the 
material’s yield strength, SY. It can also be extended to the ultimate tensile strength of the 
isotropic material, SU. 

 

3.1.1 Von Mises Stress 

• For a 2D material: 

 

• For a 3D material: 
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3.1.2 Strength Ratio 

The strength ratio SR is computed as follows: 

Using the yield strength:   

 

Using ultimate strength:  

 

3.1.3 Failure Index 

The failure index F is the inverse of the strength ratio: 

 

3.1.4 Margin of Safety 

The margin of safety MS is computed from the failure index as follows: 

 

Where FS is a safety factor. 

3.2 Laminate first ply failure and Tsai-Wu criterion (2D) 

 
The widely used Tsai-Wu failure criterion is presented here, in its 2D form. 
 

3.2.1 Failure Index 

The expression of the Tsai-Wu failure criterion is: 
 

 
 
where F is the failure index and: 
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in which: 
 

• XT:  Tensile stress limit in 1–direction 

• XC: Compressive stress limit in 1–direction 

• YT: Tensile stress limit in 2–direction 

• YC: Compressive stress limit in 2–direction 

• S:  Shear stress limit in 12 plane 

In the absence of test data, the following is recommended for defining the Tsai-Wu interaction 

coefficient, F12: 

 

The software performs the following stability check: 

 
If the stability check passes, the software uses the user-defined value for F12. If the stability 
check fails, the software uses F12 = 0.0. 
 

3.2.2 Margin of Safety 

To calculate the Tsai-Wu margin of safety, we must first determine the value of the 
proportionality factor α such that the state of stress given by ασ1, ασ2, and ατ12 gives a failure 
index F of 1. To calculate the value of α, we rewrite the first equation in this section: 

 

which is a quadratic equation in α that can be rewritten: 

 

where: 
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The solutions to this quadratic equation are: 

 
The software takes α to be the smallest positive value between α1 and α2. If both α1 and α2 are 
negative, α is set to zero. The software calculates the margin of safety MS as follows: 

MS = (α/FS – 1) X 100 

Where FS is a safety factor. 

 

3.2.3 Strength Ratio 

The strength ratio SR is the proportionality factor α: 

SR = α 

4 Random Theory 
Random events are not deterministic, that is, one cannot know the value of a random signal at 
any one time. If one measures a random signal many times, exactly repeating the experiment, 
with identical start time, duration, sampling interval, etc., one will get a different result each 
time! This is shown in Figure 1. However, the event can be quantified using statistical metrics 
such as a mean value and a standard deviation. 

 

 

Figure 1 Random Process is Probabilistic, Not Deterministic. 

 

Random theory assumes the signal has a zero-mean and is stationary and ergodic: 

• In stationary signals, the statistics of the environment do not change over time, i.e. 
ensemble statistics are same at t1 as at t2, regardless of value of t1 or t2.   
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• In an ergodic process the statistics of one sample over time are the same as the 
statistics across the entire ensemble at a particular time tk. In other words, any 
individual sample can represent the entire random process. 

• The signal’s mean value is zero. This implies that offsets such as a static preload 
should not be considered in a random simulation. 

4.1 Probability Density Function 

Random analysis is about the probability of the signal being of a given magnitude. The graph in 
Figure 3 shows a probability density function (PDF) p(x), defining the probability that a 
parameter x has a certain value during the event. 

 

Figure 2 Probability Density Function of parameter X 

 

Integrating the probability density function gives the probability that x lies between 2 values, for 
example a and b. This is defined by the area shown in the graph. If you integrate the PDF from 
−∞ to +∞ , this will give a value of 1. The cumulative probability distribution function (CDF) 
P(x1) is defined as  

][Prob)()( 11

1

xxdxxpxP
x

==  −
 

which is the integral of the probability density function p(x) with the lower limit set to −∞; it 
defines the confidence in x being less than or equal to a given value x1. 
 
Random event inputs are assumed to be zero-mean, stationary and Gaussian random signals, 
and are applied to linear finite element models. As a consequence of the model’s linearity, the 
response will also follow a zero-mean, stationary and Gaussian distribution, as shown in Figure 
3.  
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Figure 3 Normal (Gaussian) distribution curve, showing the probability as a function of standard 
deviation [source : wikipedia]. 

A Gaussian probability density function can be expressed as using the standard deviation 𝜎 and 

mean 𝜇: 

2

2
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−
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where 𝝁 is assumed to be zero.  

4.2 Confidence Level and Peak Results 

For a Gaussian distribution, the probability of the signal being in a certain range is usually 
expressed as a scalar number of standard deviations σ. If we define 𝝀  as the number of 
standard deviations 𝝈 on the x axis of Figure 3, the confidence level can be obtained from the 
following formula, where erf is the error function: 

Confidence level (%) = 𝑒𝑟𝑓 (
𝝀

√2
) 

Table 1 relates the confidence level to the number of standard deviations 𝝀: 
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Table 1 Frequently used values of 𝝀 and their corresponding confidence levels 

 

 

 

 

 

 

A commonly used confidence level is 99.73% which, for a Gaussian distribution, is achieved 
when the signal is within the [μ-3σ, μ+3σ] interval, or the [-3σ, 3σ] interval, since the mean is 
assumed to be zero. This interval is also referred to as the ‘3-sigma’ interval. It should be noted 
that the root mean square (RMS) value of the signal equals its standard deviation σ when the 
mean is zero. 
 
Output quantities associated with a specified confidence level are called Peak results. In the 
general case in which the results follow a zero-mean Gaussian distribution, Peak values can 
easily be computed by multiplying the RMS (or standard deviation) value by 𝝀, which can also be 
referred to as the peak-to-RMS ratio.  
 
Some common response quantities do not follow a Gaussian distribution, these are detailed in 
section 5: Their Peak values cannot be accurately obtained from their RMS values. 

4.3 Random Base Excitation Response 

The response power spectral density is computed as follows: 
 

 
Where: 

• ∅𝑦𝑗 is eigenvector j for value y 

• ∅𝑦𝑘 is eigenvector k for value y 

• Γ𝑗𝑥 is the modal participation factor for mode j in the x direction 

• Γ𝑘𝑥 is the modal participation factor for mode k in the x direction 

• ℎ𝑗
∗(𝜔) is the complex conjugate of the transfer function for mode j 

• ℎ𝑘(𝜔) is the transfer function for mode k 

• 𝑆𝑏̈(𝜔) is the input acceleration power spectral density 

The square of the response’s standard deviation is the integral of the response PSD over the 

desired frequency band: 

 
The RMS response is equal to the standard deviation, since the mean is zero. 

𝝀 
Confidence 

Level 
Probability of 

|x| >  

1 
2 
3 
4 
5 

68.2689 % 
95.4500 % 
99.7300 % 
99.9937 % 
99.9999 % 

   31.7311 % 
     4.5500 % 
     0.2700 % (≈0.3%) 
     0.0063 % 
     0.0001 % 
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Gaussian peak responses can be computed as follows: 
 
Peak = 𝜆 × RMS 

5 Issues with traditional Random Analysis  

5.1 Integration 

As we have seen in section 3.3, the estimation of RMS results involves integration which is a 
computationally expensive process. Traditional solvers integrate each response, as a result their 
performance is directly related to the number of requested responses and the number of 
excitation frequencies. 

5.2 Determination of excitation frequencies 

Simcenter Nastran SOL 111 requires the user to define excitation frequencies. Below is an 
example acceleration PSD response of nodes on an electronic box computed by the SOL 111 
random subcase, using: 

• 198 excitation frequencies, linearly incremented between 10 and 1000 Hz (FREQ1) 

• 125 frequencies spaced around the 67 natural frequencies and the end points at 10 and 
1000 Hz (FREQ3). 

 

 

Figure 4 An example acceleration PSD response; Linearly spaced frequencies (FREQ1),  Spaced 

around natural frequencies (FREQ3) 
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Even though there are more frequency points in the red curve (198) than in the blue one (125), 
it underestimates some peaks: There is a 16% difference in the RMS values of the 2 responses. 
 
A user might be tempted to simply define a large number of excitation frequencies. While this 
does not significantly affect performance for small models, it can be very penalizing for large 
ones. A trial-and-error approach is therefore often used to determine the lowest acceptable 
number of excitation frequencies. 

5.3 Estimating Derived Stress Quantities 

 

5.3.1 Von Mises Stress 

Most commercial finite element software estimate RMS quantities of Von Mises stress. 
However, Von Mises stresses don’t have zero means since they’re always positive, which implies 
they will not follow Gaussian distributions. Simulation engineers have little choice but to ignore 
this limitation and typically estimate the Peak Von Mises stress as σvm, peak = λσvm, RMS. For 99.73% 
confidence, λ = 3. 
 
What error is incurred by this assumption? Is the assumption conservative, or does it 
dangerously underestimate the Peak values? To answer this question, we computed actual Von 
Mises stress distributions using Monte Carlo methods and estimated RMS and Peak values1. 

5.3.1.1 Monte Carlo Simulation 

In the study, we chose a space antenna FEM consisting of 13,500 beam, shell and solid 
elements, as well as 8,300 nodes. The antenna main reflectors, inter-reflector structure, sub-
reflector and struts are fabricated from Kevlar and carbon fiber composites. The central feed 
structure is metallic, and its elements were used for the Von Mises stress calculations, while the 
laminate elements were used for Tsai-Wu metrics described later. 
 

 
  

Figure 5 Space Antenna Model 

We needed n random samples of Gaussian zero-mean Cartesian stresses (σx, σy, σxy) which are 
consistent with the symmetric variance-covariance matrix of the Cartesian stresses [S] obtained 
from the random processor. We chose n = 5 × 106 for a balance of accuracy and computation 
time. 
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For each 2D element with isotropic material properties, the Von Mises stress was computed for 
all the (σx, σy, σxy) samples, at both top and bottom. Statistics for the population of Von Mises 
stresses were then computed, such as mean and RMS. The cumulative distribution function was 
found, and the probability density function was obtained by numerical differentiation. 
 
The Peak Von Mises stress corresponding to the chosen confidence was found by sorting the 
Von Mises samples in ascending order and choosing the sample corresponding to the 
confidence. The peak-to-RMS ratio was then calculated as follows: 

rmsvm,

peakvm,

vm



=ratio  

 
The Monte Carlo simulation results for the 2D metallic elements in the antenna feed are 
presented in Table 2, including estimated minimum and maximum peak-to-RMS ratios and 
associated percent errors: 
 
 
 

Table 2 Von Mises stress results for antenna model. 

Confidence 
(%) 

λ Min Ratio 
Error 
(%) 

Max Ratio 
Error 
(%) 

99.00 2.5758 2.055 -25.32 2.574 -0.07 

99.73 3 2.326 -28.99 2.999 -0.04 

99.994 4 2.970 -34.66 -4.004 0.09 

99.9999 5 3.614 -38.36 -5.105 2.05 

 
The percent error is the error in assuming the Von Mises stress is Gaussian (σvm, peak, 

Gaussian = λσvm,rms) and is computed by comparing with Monte Carlo Simulation results (σvm, peak) as 
follows: 

100100Error(%)
vm

vm

peakvm,

Gaussianpeak,vm,peakvm,


−
=

−
=

ratio

ratio 




 

For the industry standard confidence value of 99.73% (𝜆 = 3) the maximum error in the 
antenna model was found to be 28.99%. The error increases with the confidence level. The good 
news is that scaled RMS Von Mises Stresses (λσvm,rms) are higher than the more accurate Peak 
results (σvm, peak), so that the industry practice is inherently conservative. 
 

5.3.1.2 Segalman Method 

The Segalman method is the industry standard approach of estimating random Von Mises 
stresses. It transforms the modal problem into a basis where the stress variables are 
uncorrelated, producing at most 5 independent, identically distributed Gaussian stress 
processes y, each with unit variance: 
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The RMS Von Mises Stresses are: 

 
 
The probability of the Von Mises stress exceeding a certain value Y is estimated using the single 
to quintuple integral: 
 

 

2

( , )

( ) ( )r r r

Z D Y

P VM Y y dy =  
 

 
The Segalman method evaluates the above integral. Aside from computing the RMS Von Mises 
stress which is inaccurate as we have seen in the previous section, the estimation of this integral 
is computer intensive and results in performance problems for industrial models. 
 

5.3.2 Other Derived Stress Quantities 

Random solvers do not generally estimate minimum and maximum principal stresses, or 
maximum shear stresses. The same limitations apply for RMS estimates of these derived 
quantities, as do for Von Mises stresses.  

5.4 Laminate failure metrics 

Few if any commercial finite element software estimate RMS or Peak quantities of composite 
failure metrics.  Simulation engineers typically convert RMS ply stress components to Peak using 
𝜆=3. However, since all the peak components are inherently positive, it’s not possible to 
leverage interactive theories such as Tsai-Wu. But we can still investigate the type of error that 
would result if one were to take RMS Tsai-Wu failure metric results and scale them using 𝜆. 
 
We have done this using Monte Carlo Simulation, in a similar way to how Von Mises stresses 
were investigated. 
 

5.4.1 Monte Carlo Simulation 

 A summary of results for the Tsai-Wu failure index FI is given in Table 3.  

Table 3 Tsai-Wu failure index results for antenna model 

Confidence 
(%) 

λ Min Ratio 
Error 
(%) 

Max Ratio 
Error 
(%) 

99.00 2.5758 3.276 21.37 3.835 32.84 

99.73 3 4.220 28.91 5.210 42.42 

99.994 4 6.984 42.73 9.265 56.83 

99.9999 5 10.686 53.21 15.869 68.49 

 
For the industry standard confidence value of 99.73% (𝝀 = 𝟑), the maximum error in the 
antenna model was found to be 42.42%. Like for Von Mises stress, the error increases with the 
confidence level. Contrarily to Von Mises stress, scaling the RMS value of this failure index by 𝝀 
would lead to an underestimation of the exact peak failure index, hence it is not a conservative 
practice. 
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5.5 Desktop locking 

The historical trend is for FEMs to keep growing in size and more modes to be requested for 
improved accuracy. It’s therefore not unusual for random base excitation solutions to take 
several hours to complete. This obviously shouldn’t lock a user’s desktop.  
 

5.6 Estimating Peak values 

The conversion from RMS to Peak results has been covered for both Gaussian and non-Gaussian 
results in sections 4.3 and 4.4.  The need to constantly scale RMS results using the peak-to-RMS 
ratio λ is a major usability issue which users struggle with in the absence of any alternative.  
 

5.7 Requesting multiple result types 

The relative complexity of random simulations is such that users typically need some form of 
validation. This can include: 

• Requesting the response PSD at the enforced motion location and comparing it to the 
input PSD 

• Examining components of the stress tensor to validate failure metric results. 

• Requesting acceleration responses to compare with historical data. 
Fastener analysis may rely on the extraction of element and or grid point forces. 
 
Some software requires the user to submit a different solver run for each desired result type. 
The limitations of this architecture are apparent when several iterations are performed on large 
models with many structural connections. 

6 SAToolkit Random Processor 

To address the issues identified in section 4, Maya’s SAToolkit offers a dedicated Random 
Processor. This processor utilizes an efficient and accurate modal approach to evaluate the 
dynamic response of a structure subjected to a random base acceleration power spectral 
density (PSD) function. 

6.1 Random Processor Solution  

The Random Processor references a Simcenter or MSC Nastran SOL 103 result file, from which it 
extracts the following data: 

• Modal data: eigenvalues, eigenvectors, and modal participation factors. 

• Residual vectors (optional). 

• Failure data for laminates: ply failure theories and material stress and strain limits. 

6.1.1 Solver 

The solver uses advanced integration algorithms to produce any combination of specified output 
in a single analysis and implements multithreading to enhance performance. It automatically 
determines the required excitation frequencies on a result by-result basis, so you are not 
responsible for defining the right number of spectral lines. 
 
The Random Processor consumes all selected normal modes from the solved modal model. It 
queries the user-specified modal damping entered as an amplification factor Q. All other forms 
of damping are ignored. 
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6.1.2 Specifying the PSD excitation function 

Before solving the Random Processor, you must one or more subcases, each containing an 
acceleration power spectral density. The software automatically determines the base as the 
node referenced in the mandatory USET,U2 card. 
 

6.1.3 Random Processor results 

The Random Processor computes the following contour results: 

• Peak or RMS acceleration, displacement, velocity, multipoint constraint (MPC) force, 
single-point constraint (SPC) force, and grid point force. The software automatically 
computes phase-consistent translational and rotational magnitudes for the above, 
except grid point force. 

• Peak or RMS stress, strain, and force. The software automatically computes Von Mises 
stress and strain for both homogenous and laminate elements. You can also specify how 
the Random Processor computes principal stresses and strains using an approximate 
(faster) or a precise (slower) method. 

• Peak and RMS failure indices, strength ratios (laminates only), and margins of safety.  

• Number of positive zero crossings responses for acceleration, displacement, velocity, 
MPC force SPC force, stress, strain, and force 
 

The Random Processor computes the following function results: 

• Power spectral density XY functions for acceleration, displacement, velocity, MPC force, 
SPC force, stress, and strain. 

6.1.3.1 Peak Contour Results 

Peak results account for the user-defined confidence level, which is typically 99.73% or 3-sigma. 
You are not required to post-process the results by multiplying the root mean squared (RMS) 
results by 3, as you do for Nastran Solution 111 or 108. The solver uses advanced methods to 
accurately determine the Peak value for derived results that do not follow a Gaussian 
distribution, such as Von Mises stresses or Tsai-Wu failure indices. 

6.1.3.2 RMS Contour Results 

For basic results such as components of acceleration or stress tensor components, RMS results 
computed by the Random Processor are identical to Peak results defined with a confidence 
value of 68.27% (λ=1). This is not true for derived results like Von Mises stress. In order to 
compare Random Processor derived results with those produced by the Random event and 
Nastran SOL 111, you must request RMS results. RMS Von Mises stress results are computed by 
the Random Processor using the Segalman method and compare well with Von Mises stresses 
from the other 2 solvers. 
 

6.1.3.3 Pre and Post-Processors 

 
Nastran SOL 103 solutions can be prepared in Simcenter 3D Engineering Desktop as well as in 
Simcenter FEMAP. The same products can be used to display contour and PSD XY Function 
results created in op2, binary universal (.bun) and FEMAP neutral (.NEU) formats. 
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6.1.4 Running from a command line 

You can run the Random Processor from a command line, leveraging other Windows or Linux 
servers at your disposal. 

6.2 Benchmark  

Two solvers were compared in terms of performance and accuracy for a random base excitation 
simulation: 

• SAToolkit V9 Random Processor 

• Simcenter Nastran SOL 111 with random subcase 
 

The compared results include: 

• Acceleration  

• Stress tensor components (CQUAD4, TET10, PCOMP)  

• Von Mises stress (CQUAD4, TET10) 

• Force (CELAS2, CBUSH) 
 

The benchmark was performed with the spacecraft model shown in Figure 7, which contains: 

• 161,672 nodes  

• 130,562 elements broken down as follows: 

• 1D: CBUSH, CELAS, CBEAM and CBAR 

• 2D: CQUAD isotropic shells and laminate 

• 3D: TET10  

  

Figure 6 Spacecraft model, base acceleration was applied at node 1138527. 

A base acceleration was applied in the Z direction at node 1138527. This enforced location node 
was connected by 12 RBE2 elements to the conical launch adaptor. The base acceleration was 
defined by the power spectral density function of Figure 7. 
 

Node 1138527 
RBE2 Elements 
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Figure 7 PSD input for base acceleration. 

 
The modal basis consisted of the first 150 constrained modes, the effective masses of which are 
shown in Table 4 below. 
 

Table 4 Effective Masses for Constrained Spacecraft FEM 

 

Mode Freq (Hz) Mx My Mz Mx (%) My (%) Mz (%) 

1 23.369 6.32E+00 1.16E+00 9.72E-03 1.1% 0.2% 0.0% 

2 24.691 1.57E+00 7.01E+00 1.39E-04 0.3% 1.2% 0.0% 

3 31.928 4.17E+01 7.54E+01 2.95E-01 7.0% 12.7% 0.0% 

4 32.719 5.40E+01 4.77E+01 2.51E-01 9.1% 8.1% 0.0% 

5 34.203 7.44E+00 2.67E+00 5.06E-02 1.3% 0.5% 0.0% 

6 36.487 1.08E+00 3.76E+01 1.73E+00 0.2% 6.3% 0.3% 

7 42.188 2.62E+02 7.64E+00 6.40E-02 44.3% 1.3% 0.0% 

8 46.025 1.50E+01 1.81E+02 2.17E-01 2.5% 30.6% 0.0% 

9 51.699 4.36E-01 9.19E+01 2.86E-02 0.1% 15.5% 0.0% 

10 53.581 6.71E-02 2.33E-03 8.15E-03 0.0% 0.0% 0.0% 

11 54.211 3.40E+00 1.04E-01 1.36E-02 0.6% 0.0% 0.0% 

12 62.666 1.44E+01 2.51E-01 1.34E-02 2.4% 0.0% 0.0% 

13 74.049 1.10E+01 1.24E-01 9.40E+00 1.9% 0.0% 1.6% 

14 75.989 1.75E+00 1.48E-01 4.40E+00 0.3% 0.0% 0.7% 

15 76.138 1.24E+00 5.84E-03 8.84E-01 0.2% 0.0% 0.1% 

16 76.689 8.93E-02 6.45E-02 2.27E-02 0.0% 0.0% 0.0% 

17 77.681 1.38E+01 2.65E-02 2.31E+01 2.3% 0.0% 3.9% 

18 83.697 1.40E+00 1.05E+00 8.51E-01 0.2% 0.2% 0.1% 

19 84.104 2.54E+00 2.16E+00 1.66E+00 0.4% 0.4% 0.3% 

20 84.694 4.23E-03 5.74E-03 3.16E-03 0.0% 0.0% 0.0% 

21 84.904 3.04E-03 4.00E-03 5.57E-02 0.0% 0.0% 0.0% 
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22 85.015 1.72E-02 6.22E-02 2.09E-02 0.0% 0.0% 0.0% 

23 91.783 1.04E+01 6.18E-01 3.24E+02 1.8% 0.1% 54.8% 

24 96.190 4.98E-02 1.70E-01 3.44E-01 0.0% 0.0% 0.1% 

25 96.765 2.18E+01 4.92E+00 1.41E+01 3.7% 0.8% 2.4% 

26 100.463 1.88E+01 2.08E+00 4.84E+00 3.2% 0.4% 0.8% 

27 102.622 2.66E+00 7.80E+00 8.24E+00 0.4% 1.3% 1.4% 

28 105.604 9.61E+00 8.32E-01 6.15E+00 1.6% 0.1% 1.0% 

29 106.500 6.99E-03 4.02E-01 6.15E+00 0.0% 0.1% 1.0% 

30 108.584 8.89E+00 6.98E-01 4.28E+01 1.5% 0.1% 7.2% 

31 110.875 2.42E+00 2.21E-01 3.02E+01 0.4% 0.0% 5.1% 

32 113.187 2.85E+00 3.57E+00 2.93E+01 0.5% 0.6% 5.0% 

 …  … …   …  … …   …  … 

144 390.218 2.44E-03 6.01E-02 5.47E-02 0.0% 0.0% 0.0% 

145 392.980 1.66E-02 3.05E-01 3.39E-02 0.0% 0.1% 0.0% 

146 394.751 3.57E-02 3.09E-03 8.28E-02 0.0% 0.0% 0.0% 

147 396.025 1.29E-03 9.94E-05 3.17E-02 0.0% 0.0% 0.0% 

148 400.434 6.49E-04 2.04E-02 5.62E-02 0.0% 0.0% 0.0% 

149 404.155 2.38E-01 3.96E-02 9.86E-01 0.0% 0.0% 0.2% 

150 407.053 9.59E-02 6.97E-02 8.03E-02 0.0% 0.0% 0.0% 

  Total 580.682 580.518 575.263 98.1% 98.1% 97.2% 

 

6.2.1 Solution Setup 

The spacecraft FEM was created using Simcenter 3D Desktop version 2021.1. Simcenter Nastran 
2021.1 was used for solving SOL 111 Modal Frequency Response; Simcenter Nastran 2021.2 was 
to solve SOL 103 used by SAToolkit V9 Random Processor. 
 

6.2.1.1 Residual Vectors 

 
The Nastran SOL 111 solution included the definition of inertial load residual vectors as per the 
following card: 
 

 
 
The Nastran SOL 103 solution used by SAToolkit included the definition of inertial load residual 
vectors as per the following card: 
 

 
 
Since the benchmark model’s cumulative effective masses are quite high in all translational 
directions, the consideration or not of residual vectors probably has little effect on the result 
comparisons.  
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6.2.1.2 Excitation Frequencies  

 
6.2.1.2.1 Random Processor 
 
The Random Processor automatically determines the required excitation frequencies, by result 
type. There is no user action. 

 

6.2.1.2.2 Nastran SOL 111 
 
In the Nastran SOL 111 solution, excitation frequencies were defined using the FREQ3 card. This 
card includes all natural frequencies, and the user specifies the number of frequencies, NEF, 
between natural frequencies. 
 
Since increasing NEF improves accuracy at the expense of performance, we followed a trial-and-
error approach to determine the lowest acceptable values. First, we selected randomly 
dispersed nodes in different locations of the model and computed RMS values of acceleration 
using a high number of intermediate frequencies. Then, we reduced the number of frequencies 
until the results started to diverge. Convergence can be affected by the choice and number of 
sample nodes. The following steps were performed: 

1. 150 nodes were selected out of the model’s 161,672 nodes. 
2. NEF was initially set to 1000. 
3. RMS translational accelerations were extracted. 
4. A 5% convergence criterion was used. NEF values were reduced until the convergence 

failed. This occurred at NEF = 40.  
5. These intermediate frequency values were used in the benchmark. The final FREQ3 card 

used is shown below for reference. 
 
$FREQ3 SID F1 F2 TYPE NEF CLUSTER 

FREQ3 101 20 2000 LINEAR 40 1 

 

6.2.1.3 Stress Recovery 

 
In all Nastran solutions, stresses were requested at the element centroids only: 
 

 
 
However, for solid elements Nastran recovers the stresses at the corner nodes as well in the op2 
file, regardless of this setting. Hence in this benchmark, Nastran SOL 111 random subcase 
computed corner stresses for the solid elements of the spacecraft FEM. The Random Processor 
can compute centroidal or corner node stresses, not both: It was instructed to compute corner 
node results for consistency, at the expense of performance since this was not required for the 
shell elements. 
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6.2.1.4 Modal Damping 

Constant modal viscous damping of 2% critical (Q = 25) was applied to all modes in both SATK 
and Simcenter Nastran SOL 111. No other sources of damping were considered. 
 

6.2.2 Machine 

All solutions were performed on a Windows 10 machine with 8 x 3.80 GHz cores, over 2 TB of 

available disk space and 64 GB RAM. 

 

6.3 Improving Efficiency 

The SAToolkit Random Processor provides unprecedented efficiency due to the best-in-class 
performance of its solver as well as its streamlined and intuitive workflows, including the ability 
to process multiple result types in a single solve, automatic computation of Peak results that 
correspond to a user-defined confidence, automatic computation of failure metrics, and the 
option to solve in batch mode. 

6.3.1 Solver Performance 

The current benchmark illustrates the significant performance gain of the Random Processor 
compared to Nastran Solution 111. As shown in Table 5, it’s 2,999X faster than Nastran SOL 111 
at computing accelerations for about 160,000 nodes. At computing Von Mises and tensor 
stresses for about 110,000 elements, it’s over 11,000X faster than Nastran. It should be noted 
that Nastran SOL 111 required over 2 TB of scratch space to complete the solution. 

Table 5 Spacecraft benchmark solution time comparison   

Elapsed time – seconds 
(Normalized with respect to Random Processor) 

Output Request(s) 
Random 

Processor 
Nastran SOL 

111 8 

Acceleration  
161,672 nodes 

8 
(1) 

23,990 
(2,999) 

Force 
445 1D elements  

2 
(1) 

132 
(66) 

Stress 1 
110,274 elements 

9 5 
(1) 

99,230 6 
(11,026) 

A     Acceleration, Stress1,6 and 
Force 

15 5 
(1) 

123,352 6 
(8,223) 

Acceleration, Stress 1, Force, 
Principal Stresses, Failure 
Index, Margin of Safety, and 
laminate Strength Ratio 

 
185 s 3,5 

 
n/a 7 

 

1. Tensor components and Von Mises stress 

2. Unused 

3. Principal Stress Method set to Approximate 

4. Unused 

5. Center and corner stresses requested for all elements  

6. Center stresses for 2D elements; corner stresses for 3D elements 
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7. Nastran SOL 111 does not compute principal stresses, failure indices, margins of safety and laminate metrics 

8. This is the time for the restarted random subcase and excludes the SOL 103 solve time 

 

6.3.1.1 Von Mises Stress 

It’s also clear that the advanced Random Processor Von Mises stress estimation algorithms are 
particularly performant compared to the other solvers. This is a game-changing feature since it 
allows for very large models to be solved, models which previously would not have been 
considered for a random analysis. An implication is that time-consuming FEM simplification and 
abstraction efforts can be reduced or eliminated, thereby saving manpower and reducing 
calendar time. 

6.3.1.2 Integration 

The Random Processor’s outstanding performance relies on an advanced integration approach, 
which contrarily to traditional solvers operates on a subset of the output requests. 
 

6.3.2 Workflow 

Solution time is an important consideration, however it’s not the only one. The time users spend 
preparing the solution and processing results, and the ability to work in parallel, are key 
considerations. 

6.3.2.1 Output Requests 

Like Nastran, the Random Processor allows the user to request multiple result types 
(accelerations, forces, etc.) in the same solution. Unlike Nastran however, a single solution can 
produce both contour and XY plot results.  
 

6.3.2.2 Peak results 

Nastran produces RMS results, which are typically converted to Peak results by the user who 
manually scales the results by a factor of 3. Whereas this workflow is deeply entrenched in 
industry, it’s now completely unnecessary. 

6.3.2.3 Batch solutions 

The current benchmark uses a medium-sized model with a medium-sized modal basis. It’s not 
uncommon for FEMs to contain more than 1 million elements, and for several hundred modes 
to be retained. Typically, three axes of excitation are required. This can imply several hours of 
computation. The ability to run single or multiple solutions in batch mode on a local or remote 
server is therefore critical. 
 

6.3.2.4 Automatic Failure Metrics 

In most FE projects, calculating the stresses is not a goal. Rather, engineers validate a design by 
comparing simulation results to strength or strain limits. The Random Processor can extract 
strengths from Simcenter 3D isotropic and orthotropic materials.  These are stored in the results 
file of the Nastran SOL 103 simulation. Users can then request failure metrics for homogeneous 
elements (failure index, margin of safety), as well as laminate failure metrics for composite 
elements (failure index, strength ratio, margin of safety).  
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6.4 Improving Accuracy 

For basic results like components of acceleration, stress tensor and element forces, section 6.4.1 
shows that the Random Processor compares very well with Nastran SOL 111. 
 
Section 6.4.2.2 shows that, for derived results like Von Mises stress, the Random Processor 
provides enhanced accuracy as its Peak results are consistent with the user-defined confidence.  
The Random Processor produces other derived results which are unavailable when using 
Nastran SOL 111. 
 
For the purpose of validation, RMS Von Mises stresses can be requested and compared with the 
Nastran RMS stresses. Section 6.4.2.1 shows an excellent correlation. 
 
Users can therefore safely migrate to the Random Processor and benefit from its superior 
accuracy. 

6.4.1 Basic Results 

The next 3 sections compare the RMS values of basic results produced by the Random Processor 
and Simcenter Nastran SOL 111 random subcase. Since the differences increase as the relative 
magnitudes of the results decrease, for reasons that include rounding off, the differences are 
determined against percent ranges of the maximum result value. 
 
Table 6 summarizes the maximum differences between Random Processor and SOL 111 for 
results greater than 50% of maximum value.  

Table 6 Summary of Maximum Differences for Basic Results 

Result component (RMS) 
Nastran SOL 111 

Max 1 Avg2 

Acceleration (X, Y or Z) 0.02% 0.16% 

Element Force - CBUSH  
(NXX, NYY or NZZ) 

0.43% 0.90% 

Stress Tensor (XX, YY or XY) 0.48% 0.33% 

 

Notes 

1. Maximum difference for all results greater than 50% of maximum value 
2. Average over all results 

 

The RMS acceleration, force and stress results compare extremely very well between the 
Random Processor and Simcenter Nastran SOL 111 random subcase. 
 

6.4.1.1 RMS Accelerations 

 
Table 7 shows the differences between Random Processor and Nastran SOL 111 for each 
component of RMS acceleration, on the roughly 162,000 nodes of the Spacecraft FEM.  
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Table 7 RMS Accelerations, Compare Random Processor to Nastran SOL 111 

Acceleration 
Range   
(% of Max) 

Nastran SOL 111 

X Y Z 

Max Avg Max Avg Max Avg 

50% - 100% 0.001%   N/A N/A 0.02%   

10% - 100% 0.02%   2.5%   0.35%   

1% - 100% 8.7%   4.8%   0.77%   

All 10.0% 0.05% 4.8% 0.13% 0.77% 0.16% 

 
 
Figure 8 shows the contour plots of the Z component of RMS acceleration (Left: Random 
Processor; Right: Nastran SOL 111) 
 
 

 

Figure 8 RMS Z-Acceleration Contours 

 

6.4.1.2 RMS CBUSH Forces 

 

Table 9 shows the differences between Random Processor and Nastran SOL 111 for each 
component of RMS element force.  
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Table 9 RMS Forces, Compare Random Processor to Nastran SOL 111 

 

Force Range   
(% of Max) 

Nastran - SOL 111 

NXX NYY NZZ 

Max Avg Max Avg Max Avg 

50% - 100% 0.05%   0.39%   0.43%   

10% - 100% 0.84%   0.51%   0.67%   

1% - 100% 1.83%   12.4%   0.82%   

All 1.83% 0.26% 12.4% 0.90% 0.82% 0.17% 

 
Figure 9 shows the contour plots of the Z component of Element Force (Left: Random Processor; 
Right: Nastran SOL 111) 
 

 

Figure 9 RMS Z-Force Contours  

 

6.4.1.3 RMS Stresses 

Table 10 shows the differences between the Random Processor and Nastran SOL 111, for XX, YY 
and XY components of RMS stress tensor.  
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Table 10 RMS Stresses, Compare Random Processor to Nastran SOL 111 

Stress Range   
(% of Max) 

Nastran SOL 111 

XX YY XY 

Max Avg Max Avg Max Avg 

50% - 100% 0.13%   0.42%   0.48%   

10% - 100% 15.1%   2.5%   18.8%   

1% - 100% 28.0%   26.6%   29.7%   

All 34.8% 0.31% 41.3% 0.33% 29.7% 0.28% 

 
Figure 10 shows the contour plots of the XX component of Stress (Left: Random Processor; 
Right: Nastran SOL 111) 

 

 

Figure 10 RMS XX Stress Contours 

 

6.4.2 Derived Results 

We’ve seen that derived results like displacement magnitude, Von Mises stress and Tsai-Wu 
failure index do not have zero-mean Gaussian distributions and hence their peak to RMS ratios 
are unknown. Therefore, scaling RMS Von Mises stress by 3 does not yield the same confidence 
as scaling the X component of stress by the same factor. That’s why the Peak Von Mises stress 
results of the Random Processor are so important: Firstly there is no need to scale, and secondly 
the confidence of all results, basic and derived, is consistent. 
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6.4.2.1 RMS Von Mises Stress 

It’s possible to request RMS results from the Random Processor for validation purposes. Here 
we compare the RMS Von Mises stresses computed by Random Processor with those computed 
by Nastran SOL 111, for the benchmark Spacecraft FEM. When the Von Mises stress is above 
50% of the maximum value, the errors are within 0.03%; The average error over all elements is 
0.26%. 
 

Table 11 RMS Von Mises Stresses, Compare Random Processor and Nastran SOL 111 

Von Mises Stress Range 
(% of Max) 

Nastran SOL 111 

Max Avg 

50% - 100% 0.03%  

10% - 100% 0.48%  

1% - 100% 18.85%  

All 20.98% 0.26% 

 
Figure 11 shows the RMS Von Mises stress contours on the benchmark spacecraft FEM. In the 
left viewport, Random Processor; In the right viewport, Nastran SOL 111. 
 

Figure 11 RMS Von Mises Stress Contours 
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6.4.2.2 Peak Von Mises Stress 

One of the principal advantages of the Random Processor is the accurate computation of Peak 
Von Mises stresses that correspond to the desired confidence level, and that match stresses 
obtained using Monte Carlo methods described in section 5.3.1.1. Table 12 compares the Peak 
Von Mises stress, corresponding to 99.73% confidence, with the RMS Von Mises stress 
multiplied by a peak-to-RMS ratio λ = 3. 
 

Table 12 Von Mises Stress, Difference between Peak and 3 X RMS 

Peak Von Mises Stress Range 
(% of Max) 

RMS Von Mises Stress X 3 

Max Avg 

50% - 100% 0.42%   

10% - 100% 15.5%   

1% - 100% 25.3%   

All 25.3% 3.9% 

 
For the upper range, the error is small. However, for values below 50% of the maximum Von 
Mises stress, the 3 X RMS results errors can be as high as about 25%. This is similar to the error 
found with the antenna model, ie 28.99%. 

  

Figure 12 Peak Von Mises Stress on Spacecraft FEM 
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6.4.2.3 Others 

The Random Processor can compute additional derived responses, including nodal result 
magnitudes, maximum shear stress, maximum and minimum principal stresses, ply and bond 
failure index, strength ratio and margin of safety, as well as failure index and margin of safety 
for homogeneous elements. Some of these are listed in Table 13. 
 

Table 13 Derived results specific to the Random Processor 
 

Acceleration (mm/s2) 

 
Component Node ID 

Nastran 
SOL 111 

Random 
Processor 

 Magnitude 1059403 n/a 1.65E+06 

Stress (MPa) 

Element Type Component 
Element 

ID 
Nastran 
SOL 111 

Random 
Processor 

QUAD4 laminate MAX Shear 4255 n/a 10.0 

 Ply Failure Index 51105 n/a 0.0103 

 Bond Failure Index 52398 n/a 0.0003 

 Ply Strength Ratio 51105 n/a 14.0 

  Bond Strength Ratio 51013 n/a 79.35 

  MOS (Bond) 51105 n/a 8.9 

QUAD4 isotropic MAX Shear 8346 n/a 100.29 

 Min Principal (fast) 8346 n/a -130 

 Min Principal (precise) 8346 n/a -130 

 Max Principal (fast) 8346 n/a 127 

 Max Principal (precise) 8346 n/a 130 

  Margin of Safety 8346 n/a -0.15 

  Failure Index 8346 n/a 1.18 

TET10 Min Principal (fast) 94452 n/a -85 

  Min Principal (precise) 94452 n/a -83 

 Max Principal (fast) 94452 n/a 85 

 Max Principal (precise) 94452 n/a 83 

  Margin of Safety 97551 n/a 0.19 

 Failure Index 97551 n/a 0.84 

 

6.4.3 Excitation Frequencies 

One of the key benefits of the Random Processor is that the user does not need to define 
excitation frequencies and worry about specifying either too few or too many: The solver 
automatically determines the excitation frequencies on a request-by-request basis, thereby 
removing any concerns about trading off performance versus accuracy. 
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7 Unprecedented efficiency and performance in 
random base excitation 
 
The SAToolkit Random Processor is a best-in-class tool for the simulation of base-driven random 
vibration. It utilizes an efficient and optimized modal approach to evaluate the dynamic 
response of a structure subjected to a base acceleration power spectral density function.  
 
The Random Processor leverages a parallelized standalone solver as well as advanced 
integration and proprietary algorithms for a faster solution time: At computing Von Mises and 
tensor stresses for a benchmark FEM containing about 110,000 elements, it’s over 11,000X 
faster than Simcenter Nastran SOL 111. The Random Processor processes any combination of 
requested results types and formats in a single solution. The solver can be launched from the 
command line on a remote server, thereby avoiding desktop locking. 
 
The Random Processor computes Peak results that correspond to a desired confidence level for 
a number of random responses, including Von Mises, principal and maximum shear stresses 
and strains, failure metrics for homogeneous elements, phase-consistent magnitudes for 
vector results as well as composite failure metrics like Tsai-Wu margins of safety. Manually 
scaling RMS results is no longer required, improving both workflow and accuracy: Errors of up 
to 25% were identified when using the traditional workflow of scaling RMS Von Mises stresses in 
the benchmark FEM.  Manually defining excitation frequencies is also no longer required, which 
can prevent significant errors. The Random Processor also computes PSD XY functions and the 
number of positive zero crossings.  
 
The Random Processor computes RMS results that are within 1% of equivalent, meaningful 
results from Nastran SOL 111: Users can safely migrate to the Random Processor and benefit 
from its superior performance and accuracy. 
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